Journal of Organometallic Chemistry, 110 (1976) 109-120
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

METAL COMPLEXES WITH TETRAPYRROLE LIGANDS

XV *. A CARBONYLOSMIUM PORPHODIMETHENE: SYNTHESIS, AND DETERMINATION OF THE CRYSTAL AND MOLECULAR STRUCTURE

JOHANN W. BUCHLER * , K. LAM LAY, PAUL D. SMITH
Institut für Anorganische Chemie, Technische Hochschule Aachen, D-51 Aachen (Germany)

W. ROBERT SCHEIDT, GREGORY A. RUPPRECHT and JONATHAN E. KENNY

Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556 (U.S.A.)
(Received October 9th, 1975)

Summary

A novel osmium porphodimethene, carbonyl (α, γ-dimethyl- α, γ-dihydrooctaethylporphinato) pyridineosmium(II) [$\mathrm{Os}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$], has been prepared by reductive methylation of carbonyl(octaethylporphinato)pyridineosmium(II) [Os(OEP)CO - Py]. The constitution has been determined by elemental analysis, electronic absorption-, IR, NMR, and mass spectra. The syn-axial configuration of the two methyl and the carbonyl groups follows from an analysis of X-ray diffraction data collected with a Syntex P1 diffractometer. The compound crystallizes in an orthorhombic four-molecule unit cell (space group Prma). The more important structural parameters have the following values: $d[\mathrm{Os}-\mathrm{N}$ $\left.\left(\mathrm{OEPMe}_{2}\right)\right]=2.067 \AA, d[\mathrm{Os}-\mathrm{N}(\mathrm{Py})]=2.230 \AA, d[\mathrm{Os}-\mathrm{C}(\mathrm{CO})]=1.828 \AA$, and $d[\mathrm{C} \equiv \mathrm{O}]=1.15 \AA$; the porphodimethene ligand shows a roof-like folding defined by an angle of 38.1° between the normals of the essentially planar pyrromethene halves of the macrocycle; the Os atom lies $0.18 \AA$ above the plane of the four N atoms of the (OEPMe_{2}) ligand in the direction of the CO group. The decreased value of the CO stretching frequency in $\mathrm{Os}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ $\left(\bar{\nu}(C O)=1863 \mathrm{~cm}^{-1}\right)$ compared with that in $\mathrm{Os}(\mathrm{OEP}) \mathrm{CO} \cdot \mathrm{Py}\left(\bar{\nu}(\mathrm{CO})=1902 \mathrm{~cm}^{-1}\right)$ indicates an increased back-bonding to the $C O$ group, and hence, a diminished back-bonding to the porphodimethene ligand.

Introduction

An essential component of the toxic action of carbon monoxide is the formation of carbonyl hemoglobin in which the free coordination site at the heme

[^0]iron is blocked by a CO molecule and thus is no longer accessible to the O_{2} molecule Hemes are iron(II)porphyrins, e.g. the rather labile carbonyl(octaethylporphinato)pyridineiron(II) [Ia; $\mathrm{Fe}(\mathrm{OEP}) \mathrm{CO} \cdot \mathrm{Py}]$ and are being studied by several research groups. For a recent review see ref. 1. Especially noteworthy in this context is "picket fence heme" [2], the carbonyl-(N-methylimidazole)derivative of which has been isolated [3] and investigated by X-ray diffraction methods [4]. The "picket fence heme" is a sterically and electronically modified heme.

(I) M(OEP)LL'
(Ia) $M=\mathrm{Fe}, \mathrm{L}=\mathrm{CO}, \mathrm{L}^{\prime}=\mathrm{Py}$
(Ib) $M=O s, L=C O, L^{\prime}=P y$
(Ic) $M=O s, L=N_{2}, L^{\prime}=T H F$

(II) $\mathrm{M}\left(\mathrm{OEPMe}_{2}\right) \mathrm{LL}$
(IIC) $M=F e, L=C O, L^{\prime}=P y$
(IIb) $M=O s, L=C O, L^{\prime}=P y$

Another instance of such a modification is provided by the iron porphodimethenes [II; $\left.\mathrm{M}=\mathrm{Fe} ; \mathrm{Fe}\left(\mathrm{OEPMe}_{2}\right) \mathrm{LL}^{\prime}\right]$ which are formally and chemically closely related to the "octaethylhemes" I (M = Fe) [5]. The carbonyl(porphodimethenato) pyridine heme IIa has been characterized spectrally [6], but not yet isolated as a pure solid because of its extreme sensitivity; therefore, the syn-axial configuration of the $C O$ ligand and the methyl groups at C_{α} and C_{γ} indicated in the formula IIa is as yet unproven.

The replacement of iron by osmium in the heme Ia gave the very stable osmium porphyrin $\mathrm{Os}(\mathrm{OEP}) \mathrm{CO} \cdot \mathrm{Py}$ (Ib) [7]. Generally, the adducts of osmium porphyrins with small molecules are far more stable than the corresponding adducts of hemes, as shown by the successful characterization of Os(OEP) N_{2} THF (Ic) [8]. The synthesis of the osmium analogue of IIa, Os $\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ (IIb), was therefore undertaken in order to obtain a stable material which could be used to establish the configuration of the axial methyl groups and the CO molecule in this kind of porphodimethene complex.

Synthesis and spectral characterization
The synthesis of $\mathrm{Fe}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ (IIa) involved five different chemical processes and the isolation of two intermediates because the reductive methylation [9] of Fe (OEP) does not work [5]. However, Os(OEPMe $) \mathrm{CO} \cdot \mathrm{Py}$ (IIb) could be obtained in a one-step synthesis by direct reductive methylation of $\mathrm{Os}(\mathrm{OEP}) \mathrm{CO} \cdot \mathrm{Py}(\mathrm{Ib})$. On reduction with sodium anthracenide, only a green
anionic species was observed; in this respect, the course of the reaction resembled the reductive methylation of $\operatorname{Pt}(O E P)$ [10]. The yield (19\%) was, however, also low (Pt: 15\%). The stability of the product, however, facilitated its isolation which was achieved by repeated silica-gel chromatography and crystalli-. zation. Especially noteworthy is the retainment of the pyridine ligand throughout the whole procedure.

Os(OEPMe $)$ CO - Py (IIb) forms brown, air-stable crystals. The orange-coloured solutions have a single strong absorption band at 439 mm which is hypsochromically shifted relative to its iron analogue, IIa ($\lambda_{\text {max }}=442 \mathrm{~nm}$ [6]). A similar hypsochromic shift is observed when Fe is replaced by Os in I, indicating an increased back-bonding from the heavy metal to both the porphyrin and the porphodimethene ligand [1].

However, back-bonding to the tetrapyrrole ligand seems to be less pronounced in the porphodimethene ligand because both the carbonyls IIa and IIb display a lower CO-stretching frequency than the corresponding reference com-
 $1970 \mathrm{~cm}^{-1}$ [6]; Os(OEPMe $) \mathrm{CO} \cdot \mathrm{Py}: 1863 \mathrm{~cm}^{-1}$, Os(OEP)CO $\cdot \mathrm{Py}: 1902 \mathrm{~cm}^{-1}$ [7]]. Obviously, breaking up the macrocyclic π-electron system reduces its π-acceptor capacity; probably the roof-like folding described in the next section works in the same direction. Some π-electron acceptance by the porphodimethene system may also be reflected in the rather low frequency of the "methene band" at $1592 \mathrm{~cm}^{-1}$, which normally occurs at higher values [10] although no systematic shifts of this band have been found so far. The other three strong, typical bands of the porphodimethene core [11] at 1224, 998 and $864 \mathrm{~cm}^{-1}$ are also present.

The ${ }^{1} \mathrm{H}$ NMR spectrum of IIb is fully in accord with the structure, although some of the pyridine proton signals are hidden by porphodimethene signals. A multiplet showing its highest peak at 6.9 ppm clearly arises from pyridine protons, its chemical shift showing a much lower shielding than in the related complex Ib where it appears at 5.8 ppm [7]. This indicates the absence of the macrocyclic component of ring current effects. The proton resonances of the porphodimethene core in the metal-free system, $\mathrm{H}_{2}\left(\mathrm{OEPMe}_{2}\right)$, and in nine different metal complexes have been discussed elsewhere [10,11]. Only the signals of the two sets of protons located at the methine bridges, $\mathrm{C}_{\alpha, \gamma}$ and $\mathrm{C}_{\beta, \delta}$, show significant shifts from the mean values of the ten compounds established in the previous analysis [10]. The increased shielding of the β, δ-protons and the deshielding of the α, γ-protons can perhaps be explained by a ring current effect exerted by the pyridine ligand which resides in the appropriate orientation for the production of such an effect; this is demonstrated in the next section (Fig. 1). The CO ligand has roughly the same influence on the shielding of the methyl protons at $\mathrm{C}_{\alpha, \gamma}$ as the axial methoxy group in $\mathrm{Al}\left(\mathrm{OEPMe}_{2}\right) \mathrm{OMe}$ or $\mathrm{Ga}\left(\mathrm{OEPMe}_{2}\right) \mathrm{OMe}$ [10,11$]$.

The mass spectrum does not show the intact molecular ion; the ion [Os($\mathrm{OEPMe} \mathrm{e}_{2}$)CO] ${ }^{+}$is the species appearing with the highest mass. The cracking pattern of this ion (listed in the experimental section) is typical for all these porphodimethene complexes [5,9,10]. Probably the pyridine ligand is thermally eliminated prior to ionization. The ion Py^{+}appears in the low mass region with variable intensity and proves the presence of Py in the molecule.

Determination of the crystal and molecular structure

The numbering system employed in Tables 1-4 for the carbon and nitrogen atoms in the asymmetric structure unit is displayed in Figs. 1 and 2. Figure 1 is a computer-drawn [12] model in perspective of the Os(OEPMe $) \mathrm{CO} \cdot \mathrm{Py}$ molecule as it exists in the crystal. Bond parameters (with estimated standard deviations) * are listed in Tables 3 and 4. The crystallographically imposed mirror plane passes through the atoms $\mathrm{O}, \mathrm{C}_{1}, \mathrm{Os}, \mathrm{N}_{3}, \mathrm{C}_{4}$ and $\mathrm{C}_{\mathrm{m} 1}\left(\mathrm{C}_{\beta}\right)$ and $\mathrm{C}_{\mathrm{m}} 3$ (C_{δ}) of the porphodimethene core (Fig. 1). Thus, the macrocycle contains a pair of enantiotopic ethylidene groups ($\mathrm{C}_{\mathrm{m} 2}$ and C_{5}) and two methine carbons ($\mathrm{C}_{\mathrm{m} 1}$ and $\mathrm{C}_{\mathrm{m} 3}$), each of which connects a set of two enantiotopic pyrrole rings. Only one atom of each set is labeled on the left hand side of Fig. 2. Although not required of the molecule in the crystal, the core of the molecule has approximate $C_{2 \nu}$ symmetry. Figure 3 displays average values of the bond lengths ($C_{2 \nu}$ symmetry) and radii of the core.

TABLE 1
ATOMIC COORDINATES IN THE UNIT CELL ${ }^{\circ}$

Atom type ${ }^{b}$	Coordinates			
	$10^{4} x$	$10^{4} y$	$10^{4} z$	
$\mathrm{Os}^{\text {c }}$	639(0)	1/4	486(0)	
0	-939(3)	1/4	-859(6)	
N_{1}	383(2)	1903(1)	1902(3)	
N_{2}	1087(2)	1902(1)	-771(3)	
N_{3}	1842(2)	1/4	1415(4)	
Cal^{1}	289(2)	1993(2)	3308(3)	
Ca_{2}	338(2)	1369(2)	1694(4)	
$\mathrm{Ca3}^{\text {a }}$	998(2)	1366(1)	-641(3)	
Ca_{4}	$1662(2)$	1991(1)	-1766(3)	
Cb_{1}	168(2)	1482(2)	3959(4)	
$\mathrm{Cb}_{\mathrm{b} 2}$	192(2)	1094(2)	2959(4)	
Cb3	1516(2)	1085(2)	-1541(4)	
Cb_{6}	1935(2)	1474(2)	-2246(4)	
$\mathrm{Cbml}_{\text {m }}$	261 (3)	$1 / 4$	3898(5)	
$\mathrm{Cm}_{\mathrm{m} 2}$	409(2)	1111(2)	318(4)	
$\mathrm{C}_{\mathrm{m} 3}$	1913(3)	1/4	-2184(4)	
C_{1}	-333(3)	1/4	-327(5)	
C_{2}	2222(2)	2039(2)	1660(5)	
C_{3}	2982(3)	2022(3)	2157(6)	
C_{4}	3368(3)	1/4	2456(7)	
C_{5}	-416(3)	1067(2)	-370(5)	
C_{11}	-4(3)	1408(3)	5466(4)	
C_{12}	-854(4)	1508(5)	5840(7)	
C_{21}	106(4)	486(2)	3108(6)	
C_{22}	858(5)	189(3)	3366(9)	
C_{31}	$1599(4)$	481(2)	-1653(7)	
C_{32}	2140(6)	253(3)	-570(12)	
C_{41}	2544(2)	1393(2)	-3350(4)	
C_{42}	2194(4)	1380(4)	-4764(6)	

[^1][^2]TABLE 2
ANISOTROPIC THERMAL PARAMETERS ${ }^{\boldsymbol{a}}$

Atom type	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Os	2.33(0)	3.09(1)	2.18(0)	0.0(0)	0.21 (1)	0.0 (0)
0	3.6(2)	$6.7(3)$	6.4(2)	0.0(0)	-1.8(2)	0.0(0)
$\mathrm{N}_{\mathbf{1}}$	$2.7(1)$	4.0(1)	$2.7(1)$	-0.3(1)	$0.1(1)$	$0.3(1)$
N_{2}	$2.9(1)$	3.3(1)	2.8(1)	0.0(1)	0.3(1)	-0.2(1)
N_{3}	2.6(1)	5.0(2)	2.7(1)	0.0(0)	0.2(1)	$0.0(0)$
Cal^{1}	2.8(1)	5.3(2)	2.8(1)	-0.1(1)	0.2(1)	0.8(1)
Ca^{2}	3.1 (1)	$4.1(1)$	3.7(1)	-0.8(1)	0.0(1)	$0.7(1)$
Ca_{3}	3.3(1)	3.6(1)	3.3(1)	-0.2(1)	$0.1(1)$	-0.1(1)
$\mathrm{Ca}_{\text {a }}$	3.0(1)	3.6(1)	2.8(1)	0.2(1)	$0.2(1)$	$-0.2(1)$
$\mathrm{Cbl}_{\mathrm{b}}$	3.8(2)	6.0(2)	3.2(1)	-0.5(1)	$0.1(1)$	1.5(1)
$\mathrm{C}_{\mathrm{b} 2}$	$4.0(2)$	5.0(2)	4.4(2)	-0.9(1)	-0.1(1)	1.8(1)
$\mathrm{Cb}^{\text {b }}$	$4.0(2)$	3.4(1)	4.8(2)	$0.1(1)$	$0.2(1)$	-1.0(1)
Cb_{6}	3.4(1)	4.0(1)	3.7(1)	$0.2(1)$	0.2(1)	-0.9(1)
Cm1	3.3(2)	6.0(3)	2.3(2)	0.0(0)	-0.3(1)	0.0(0)
$\mathrm{C}_{\text {m } 2}$	3.9(1)	3.5(1)	4.0(2)	-0.6(1)	-0.1(1)	0.3(1)
$\mathrm{C}_{\mathrm{m} 3}$	$3.1(2)$	3.6(2)	2.5(1)	0.0(0)	0.6(1)	0.0(0)
C_{1}	3.0(2)	$4.2(2)$	3.3(2)	0.0(0)	-0.1(2)	0.0(0)
C_{2}	3.6(2)	$5.8(2)$	$5.0(2)$	0.8(1)	-0.6(1)	0.6(2)
C_{3}	3.6(2)	9.3(4)	5.5(2)	2.0(2)	-0.2(2)	1.1(2)
C_{4}	2.2(2)	10.8(5)	4.7(3)	0.0(0)	-0.1(2)	0.0(0)
C_{5}	4.4(2)	$6.2(2)$	4.9(2)	-1.6(2)	-0.2(2)	$0.1(2)$
C_{11}	5.6(2)	8.1 (3)	3.6(2)	-0.3(2)	0.4(2)	2.3(2)
C_{12}	6.6(3)	16.6(8)	5.4(3)	$0.9(4)$	2.5(2)	4.4(4)
C_{21}	7.5(3)	5.4(2)	5.8(2)	-2.4(2)	-0.5(2)	2.1 (2)
C_{22}	$11.3(5)$	4.8(2)	9.5(4)	$0.1(3)$	-1.5(4)	2.0(3)
C_{31}	7.0(3)	$3.7(2)$	10.0(4)	-0.1(2)	2.3(3)	$-1.7(2)$
C_{32}	$9.1(5)$	$5.3(3)$	19.8(11)	2.5(3)	2.0(5)	3.6(4)
C_{41}	3.7(1)	5.2(2)	4.6(2)	0.5(1)	$0.7(1)$	-1.3(2)
C_{42}	6.3(3)	13.0(6)	4.5(2)	1.4(3)	$1.1(2)$	-2.2(3)

a The number in parentheses following each datum is the estimated standard deviation in the last significant figure. $B_{i j}$ is related to the dimensionless $\beta_{i j}$ employed during the refinement as $B_{i j}=\mathbf{4} \beta_{i j} / a_{i} \boldsymbol{a}_{j}{ }_{\boldsymbol{k}}$.

TABLE 3
BOND LENGTHS IN THE COORDINATION GROUP, PORPHINATO SKELETON, CARBONYL LIGAND, AND PYRIDINE LIGAND ${ }^{a}$

Type	Length (\AA)	Type	Length (A)	Type	Length (\AA)
$\mathrm{Os}-\mathrm{N}_{1}$	2.069(3)	$\mathrm{Cml}^{\text {mi }}$ - Cal	1.379(5)	$\mathrm{C}_{\mathrm{a} 4}-\mathrm{C}_{\mathrm{b} 4}$	1.435(5)
$\mathrm{Os}^{-\mathrm{N}_{2}}$	$2.065(3)$	$\mathrm{C}_{\mathrm{m} 2}-\mathrm{C}_{\mathrm{a} 2}$	1.493(6)	$\mathrm{Cb}^{4}-\mathrm{Cb}$	$1.370(7)$
$\mathrm{Os}-\mathrm{N}_{3}$	2.230(4)	$\mathrm{Cm}_{\mathrm{m} 2}-\mathrm{C}_{\mathrm{g}}$	$1.507(5)$	$\mathrm{Cb}^{\text {c }} \mathrm{Cb}$	1.380 (6)
$\mathrm{Os}-\mathrm{C}_{1}$	1.828(5)	$\mathrm{Cm}_{\mathrm{m} 2}-\mathrm{C}_{5}$	1.554 (6)	$\mathrm{C}_{1}-\mathrm{O}$	1.151(7)
$\mathrm{N}_{1}-\mathrm{Cal}_{\mathrm{a}}$	1.401(4)	$\mathrm{C}_{\mathrm{m} 3}-\mathrm{Ca}_{\mathrm{a}}$	$1.389(4)$	$\mathrm{N}_{3}-\mathrm{C}_{2}$	1.329(5)
$\mathrm{N}_{1}-\mathrm{Ca}^{2}$	$1.337(5)$	$\mathrm{CaI}^{1-\mathrm{C}_{\mathrm{bi}}}$	1.429(6)	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.377(6)
$\mathrm{N}_{2}-\mathrm{C}_{4}$	1.337(5)	$C_{a 2}-C_{b 2}$	1.432(5)	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.381(8)
$\mathrm{N}_{2}-\mathrm{C}_{4}$	1.395(4)	$\mathrm{C}_{\mathrm{a} 3}-\mathrm{C}_{\mathrm{b} 3}$	1.424(5)		

[^3]TABLE 4
BOND ANGLES IN THE COORDINATION GROUP, PORPHINATO SKELETON, CARBONYL LIGAND, AND PYRIDINE LIGAND ${ }^{\circ}$

Angle	Value (deg.)	Angle	Value (deg.)
$\mathrm{N}_{1} \mathrm{OsN}_{1}{ }^{\text {b }}$	90.9(2)	$\mathrm{N}_{1} \mathrm{Ca}_{\mathrm{a}} \mathrm{Cb}_{2}$	$110.2(3)$
$\mathrm{N}_{1} \mathrm{OsN}_{2}$	88.0(1)	$\mathrm{Cm}_{\mathrm{m} 2} \mathrm{Ca}_{2} \mathrm{Cb}_{6}$	126.2(4)
$\mathrm{N}_{1} \mathrm{OsN}_{2}$	170.1 (1)	$\mathrm{N}_{2} \mathrm{Ca}_{3} \mathrm{Cm}_{\mathrm{m}}$	$123.2(3)$
$\mathrm{N}_{1} \mathrm{OsN}_{3}$	85.4(1)	$\mathrm{N}_{2} \mathrm{Ca}_{3} \mathrm{Cb}$	110.8(3)
$\mathrm{N}_{1} \mathrm{OsCl}_{1}$	95.8(1)	$C_{m 2} C_{a 3} C_{b 3}$	126.0 (3)
$\mathrm{N}_{2} \mathrm{OsN}_{1}$.	170.1(1)	$\mathrm{N}_{2} \mathrm{C}_{\mathrm{a}} 4 \mathrm{C}_{\mathrm{m} 3}$	12¢.1(3)
$\mathrm{N}_{2} \mathrm{OsN}_{2}$	91.3(2)	$\mathrm{N}_{2} \mathrm{Ca}_{4} \mathrm{Cb}_{4}$	108.3(3)
$\mathrm{N}_{2} \mathrm{OsN}_{3}$	84.7(1)	$\mathrm{C}_{\mathrm{m} 3} \mathrm{Ca4} \mathrm{C}_{\mathrm{b} 4}$	127.6(3)
$\mathrm{N}_{2} \mathrm{OsC}_{1}$	94.1(1)	$\mathrm{CaI}_{\mathrm{al}} \mathrm{C}_{\mathrm{ml}} \mathrm{C}_{\mathrm{al}}{ }^{\prime}$	130.3(5)
$\mathrm{N}_{3} \mathrm{OsC}_{1}$	178.3(5)	$\mathrm{Ca2} \mathrm{Cm}_{\mathrm{m} 2} \mathrm{C}_{\mathrm{a} 3}$	115.8(3)
$\mathrm{OsN}_{1} \mathrm{C}_{21}$	124.5(2)	$\mathrm{C}_{\mathrm{a} 2} \mathrm{C}_{\mathrm{m} 2} \mathrm{C}_{5}$	110.4(4)
$\mathrm{OrN}_{1} \mathrm{Ca}_{2}$	$127.8(2)$	$\mathrm{Ca}_{3} \mathrm{C}_{\mathrm{m} 2} \mathrm{C}_{5}$	$110.8(3)$
$\mathrm{OsN}_{2} \mathrm{Ca}_{3}$	127.5(2)	$\mathrm{Ca}_{\mathrm{a}} \mathrm{C}_{\mathrm{m} 3} \mathrm{C}_{\mathrm{a} 4}{ }^{\prime}$	129.8(4)
$\mathrm{OsN}_{2} \mathrm{Ca}_{4}$	124.0(2)	$\mathrm{Cal}_{\mathrm{l}} \mathrm{Cbl} \mathrm{C}_{\mathrm{b} 2}$	107.1 (3)
$\mathrm{OsN}_{3} \mathrm{C}_{2}$	$121.1(2)$	$\mathrm{Ca}_{3} \mathrm{Cb}_{\mathrm{b} 2} \mathrm{Cbl}$	106.9(4)
$\mathrm{OsC}_{1} \mathrm{O}$	$178.9(14)$	$\mathrm{Ca}_{\mathrm{a}} \mathrm{Cb}_{3} \mathrm{Cb}_{4}$	106.6(3)
$\mathrm{Ca}_{\mathrm{a}} \mathrm{N}_{1} \mathrm{C}_{\mathrm{a} 2}$	107.5(3)	$\mathrm{Ca}_{4} \mathrm{Cb}_{4} \mathrm{Cb}_{3}$	106.9(3)
$\mathrm{Ca}_{3} \mathrm{~N}_{2} \mathrm{Ca}_{4}$	107.5(3)	$\mathrm{C}_{2} \mathrm{~N}_{3} \mathrm{C}_{2}{ }^{\prime}$	117.7(5)
$\mathrm{N}_{1} \mathrm{C}_{\mathrm{al}} \mathrm{Cm}_{\mathrm{ml}}$	124.0(3)	$\mathrm{N}_{3} \mathrm{C}_{2} \mathrm{C}_{3}$	$122.9(5)$
$\mathrm{N}_{1} \mathrm{Cal}_{1} \mathrm{Cbl}$	108.2(3)	$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	119.4(5)
$C_{m 1} C_{a l} C_{b 1}$	127.6(4)	$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{3}{ }^{\prime}$	117.6(6)
$\mathrm{N}_{1} \mathrm{Ca}_{2} \mathrm{Cm}_{\mathrm{m} 2}$	123.6(3)		

The number in parentheses following each datum is the estimated standard deviation in the last significant figure. ${ }^{b} C_{i}$ and C_{i}^{\prime} represent atoms related by the mirror plane at $\boldsymbol{y}=1 / 4$.

The displacement of the skeletal carbon atoms from the mean plane of the four nitrogen atoms is given in Fig. 2. On the right hand side of the diagram, the symbol identifying each atom is replaced by the perpendicular displacement (in units of $0.01 \AA$) of this atom from the mean plane of the four nitrogen atoms The corresponding enantiotopic atoms on the left hand side of the diagram have displacements of the same magnitude and sign. As is usual, local flatness is preserved for each pyrrole ring with the maximum deviation from exact planarity being less than $0.008 \AA$. As expected, the core is folded along the line joining the two saturated meso-carbon atoms C_{α} and $\mathrm{C}_{\gamma}\left(\mathrm{C}_{\mathrm{m} 2}\right.$ and $\mathrm{C}_{\mathrm{m} 2}$ ' of Fig. 1). The angle of 38.1° between the normals to the two pyrromethene halves (the mean plane of a pyrromethene half is defined by atom $C_{m 1}$, the atoms of the adjoining pyrrole ring and the enantiotopic pyrrole ring or atom $C_{m 3}$, the atoms of the adjoining pyrrole ring and the enantiotopic pyrrole ring) specifies the folding.

The value of the angle between the pyrromethene halves in the ruffled nickel complex, $\mathrm{Ni}\left(\mathrm{OEPMe}_{2}\right)$ [14], is 52° and is 38.2° for the more comparable titanyl complex, $\mathrm{TiO}\left(\mathrm{OEPMe}_{2}\right)$ [15]. The angle between the normals of the pyrrole rings defining a pyrromethene half are much smaller: 10.3° between pyrrole ring N_{1} and the enantiotopic ring, and 1.1° between pyrrole ring N_{2} and the enantiotopic ring.

The mean plane of the porphodimethene skeleton is approximately parallel to the mean plane of the four nitrogen atoms but is displaced by $\sim 0.20 \AA$. Con-

Fig. 1. Computer-drawn model in perspective of the Os(OEPMe $)_{2}$) CO. Py molecule as it exists in the crystal. The crystallographically required mirror plane passes through atoms $O, C_{1}, O \leq C_{m 1}, C_{m 3}, N_{3}$. and C_{4}. Observed bond distances for the coordination group and the peripheral ethyl groups are also displayed.

Fig. 2. A formal diagram of the porphodimethene core displaying, on the left hand side, the special symbols identifying each atom. On the right hand side of the diagram, the special symbol identifying each atom has been replaced by the perpendicular displacement of the atom, in units of 0.01 R , from the mean plane of the four nitrogen atoms of the core. The displacement of the mirior-related atoms have the same magnitude and sign as those shown.
sequently, the displacement of individual atoms from the mean plane of the core can be obtained by adding $0.20 \AA$ to the cited displacements given in Fig. 2. The osmium(II) ion is displaced $0.38 \AA$ out of the mean plane of the porphodimethene core and 0.18 \& out of the plane of the four nitrogen atoms toward the carbonyl ligand, which is on the same side of the plane as the two methyl groups of the ethylidene groups ($\mathrm{C}_{\mathrm{m} 2}$ and C_{5}) which have the syn-axial configuration. The syn-axial configuration of the methyl groups appears to be the usual configuration, as it has been observed in all known structures of α, γ-dimethylα, γ-dihydrooctaethylporphin derivatives. In addition, the more firmly bound axial ligand, CO in this case, prefers the syn-position with respect to methyl groups and thus resides on the "ridge of the roof". Consequently, we expect the same configuration for $\mathrm{Fe}\left(\mathrm{OEPMe}_{2}\right.$) $\mathrm{CO} \cdot \mathrm{Py}$ (IIa).

The $\mathrm{Os}-\mathrm{N}$ bond distances of 2.065 (3) and 2.069 (3) \AA are relatively long bond distances for a metal ion coordinated to porphyrin type ligands. These distances are nonetheless short relative to observed $\mathrm{Os}-\mathrm{NH}_{3}$ bond distances of $2.14 \AA$ in $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{2}\right] \mathrm{Cl}_{2}[16]$ and $2.136(9) \AA$ in $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\left(\mathrm{P}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)_{2}\right]$ [17]. With the above lengths as reference values, the $\mathrm{Os}-\mathrm{N}_{\mathrm{Py}}$ bond length of 2.230 (4) \AA appears long. Part of this lengthening may be ascribed to steric interaction between the α-hydrogen atoms of the pyridine ligand and atoms of the porphodimethene core: observed $\mathrm{H} \cdots$ (porphodimethene core atom) contacts range from $2.69 \AA$ upwards. The retention of the pyridine ligand throughout the course of the purification of $\mathrm{Os}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ is all the more remarkable considering the length of the $\mathrm{Os}-\mathrm{N}_{\mathrm{Py}}$ bond.

The $\mathrm{Os}-\mathrm{C}$ distance of 1.828 (5) A is shorter than the average $\mathrm{Os}-\mathrm{C}$ distances reported for $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ [18], bis-(μ-acetato)-hexacarbonyldiosmium [19] and [$\mathrm{Os}_{3}(\mathrm{CO})_{8} \mathrm{Ph}_{4} \mathrm{C}_{4}$] [20] but within the range of values reported for these complexes.

Average bond distances and angles ($C_{2 v}$ symmetry) of the core are displayed in Fig. 3. The number in parentheses following each averaged value are, respectively, the mean deviation from the average and the estimated standard deviation

Fig. 3. A formal diagram of the porphodimethene core displaying averaged values of bond distances and angles ($C_{2 v}$ symmetry). The numbers in parentheses following each averaged yalue are, respectively, the mean deviation from the average and the estimated standard deviation of an individual value. Distances from the center of the four nitrogen atoms (Ct) to selected atoms are shown as are the two limiting Kekule structures of each pyrromethene half (top and bottom).

Fig. 4. A diagram illustrating the packing of the $\operatorname{Os}\left(O E P M e_{2}\right) C O$ - Py molecules in the unit cell.
of an individual bond length (or angle) in the last significant figure of the datum. Differences in the values for the two symmetry unique $\mathrm{C}-\mathrm{N}$ bonds and deviations of the $\mathbf{C - C}$ bond lengths from values found for porphyrin derivatives have been previously discussed in terms of limiting Kekulé structures for π-electron delocalization in the porphodimethene core [14].

Fig. 4 displays the packing of the molecules in the unit cell. Intermolecular contacts range from $3.5 \AA$ upwards; there are no unusually short intermolecular contacts.

Experimental section

Synthesis (J.W.B., K.L.L. and P.D.S.)

The starting material, Os(OEP)CO $\cdot \mathrm{Py}$ (Ib), was prepared from octaethylporphyrin and OsO_{4} as described previously [7]. The elemental analysis was performed by A. Bernhardt, D-5251 Elbach (West Germany).

Carbonyl(α, γ-dimethyl- α, γ-dihydrooctaethylporphinato)pyridineosmium(II); $\mathrm{Os}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ (IIb)

A suspension of 308 mg of $\mathrm{Os}(\mathrm{OEP}) \mathrm{CO} \cdot \mathrm{Py}$ (Ib) (0.37 mmole) in 100 ml of dry, oxygen-free THF was continuously stirred under a N_{2} atmosphere in a $250-\mathrm{ml}$ Schlenk tube. Five ml of 0.25 M sodium anthracenide in THF were injected dropwise with a syringe through a septum cap. After the colour had changed from red to green, 10 ml of dry, degassed methyl iodide were injected
all at once. The solvent was removed from the resulting orange-brown solution under vacuum and the resulting residue was chromatographed three times on a silica gel plate ($100 \times 20 \times 0.05 \mathrm{~cm}$), developing with THF/cyclohexane (2:98). The product runs as an orange-brown band with $R_{F} \sim 0.8$, slightly behind the unreacted starting material, Os(OEP)CO $\cdot \mathrm{Py}$. The product was removed from the adsorbent with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallized from 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(3: 1)$ as dark brown, crystalline plates. Suction filtration, thorough washing with methanol and drying at $70^{\circ} \mathrm{C} / 10^{-2} \mathrm{~mm} \mathrm{Hg}$ for 12 h yielded $60 \mathrm{mg}(19 \%) \mathrm{Os}\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO} \cdot \mathrm{Py}$ (IIb).

Elemental analysis: Found: C, 60.62; H, 6.60; N, 8.49; O, 1.97. $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{OOs}$ (859.2) calcd.: C, $61.44 ; \mathrm{H}, 6.44 ; \mathrm{N}, 8.14 ; \mathrm{O}, 1.86 \%$.

Spectral characterization

Electronic absorption spectrum (Unicam SP 800 B , benzene): $\lambda_{\max }(\log \epsilon)=$ 439 (4.79). Infrared spectrum (Perkin-Elmer 621, KBr): $\tilde{\nu}(\mathrm{CO})=1863 \mathrm{~cm}^{-1}$, characteristic absorption bands for the (OEPMe $)^{2-}$ ligand are found at 1592, 1224, 998 and $864 \mathrm{~cm}^{-1}$.
${ }^{1} H N M R$ spectrum (Jeol JNM-C-60 HL, CDCl_{3}): $\delta=1.13\left(\mathrm{t}, \mathrm{C}_{2} \mathrm{H}_{5}\right) ; 1.30$ $\left(\mathrm{t}, \mathrm{C}_{2} \mathrm{H}_{5}\right) ; 1.62(\mathrm{~m}, \mathrm{Py}) ; 1.85\left(\mathrm{~d}, \mathrm{CH}_{3}\right) ; 2.60\left(\mathrm{q}, \mathrm{C}_{2} \mathrm{H}_{5}\right) ; 2.64\left(\mathrm{q}, \mathrm{C}_{2} \mathrm{H}_{5}\right) ; 4.59$ ($\mathrm{q}, \mathrm{CH}-\alpha, \gamma$); 6.66 ($\mathrm{s}, \mathrm{CH}-\beta, \delta$); 6.90 (m, Py).

Mass spectrum (Varian CH5) : $A=782$ [45\%, ${ }^{192} \mathrm{Os}_{\left.\left(\mathrm{OEPMe}_{2}\right) \mathrm{CO}^{+}\right], 767[64 \% \text {, }}$, $\left.\mathrm{Os}(\mathrm{OEPMe}) \mathrm{CO}^{+}\right], 752\left[100 \%\right.$, $\left.\mathrm{Os}(\mathrm{OEP}) \mathrm{CO}^{\star}\right], 738$ [19\%, Os(OEPMe $-\mathrm{C}_{2} \mathrm{H}_{5}$) $\left.\mathrm{CO}^{+}\right]$, 724 [91\%, Os(OEP) '], 391 [20%, Os(OEPMe ${ }_{2}$) CO^{2+}], $383.5\left[4 \%\right.$, Os(OEPMe) $\left.{ }^{2+}\right]$, $376\left[8 \%, \mathrm{Os}(\mathrm{OEP}) \mathrm{CO}^{2+}\right], 369\left[14 \%, \mathrm{Os}\left(\mathrm{OEPMe}-\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CO}^{2+}\right], 362[34 \%$, $\left.\mathrm{Os}(\mathrm{OEP})^{2+}\right], 79\left[\mathrm{Py}^{+}\right]$.

Determination of the crystal and molecular structure (W.R.S., G.A.R..and J.E.K.)
Preliminary X-ray examination established an orthorhombic four-molecule unit cell with $\operatorname{Pn} 2_{1} a$ or Pnma as the possible space groups. Lattice constants $a 16.937$ (1) $\AA, b 24.694$ (2) \AA, and $c 9.778$ (1) \AA (0.71069), came from a least-squares refinement that utilized the setting angles of 26 reflections, each collected at $\pm 2 \theta$. These constants led to a calculated density at $20 \pm 1^{\circ}$ of $1.397 \mathrm{~g} / \mathrm{cm}^{3}$ for a cell content of $4 \mathrm{OsON}_{5} \mathrm{C}_{44} \mathrm{H}_{5}$; the observed density is 1.39 $\mathrm{g} / \mathrm{cm}^{3}$.

Intensity data were measured on a Syntex $P \overline{1}$ diffractometer using the $\theta-2 \theta$ scanning technique with graphite-monochromated Mo- K_{α} radiation. Data collection techniques were essentially those described previously [21]. Four standard reflections were monitored periodically and no crystal decomposition was noted. All independent data having $(\sin \theta / \lambda) \leqslant 0.708 \AA^{-1}$ were measured. The dimensions of the crystal used in data collection was $0.250 \times 0.417 \times 0.602 \mathrm{~mm}$ in the three largest dimensions and was bounded by $\{1,0,0\},\{0,1,0\},\{0,1,1\}$ and $\{0,1,1\}$, With a linear absorption coefficient of $3.099 \mathrm{~mm}^{-1}$, an absorption correction was deemed necessary. The minimum and maximum transmission coefficients were 0.460 and 0.652 , respectively.

The net intensities were reduced to a set of relative squared amplitudes as described previously [21]; all data having $F_{0}<3 \sigma\left(F_{0}\right)$ were taken to be unob-
served; 4644 independent data were considered observed (76% of the theoretical number possible). Only the observed data were used for the determination and refinement of structure.

With four molecules per unit cell, the choice of Pnma requires that the molecule has C_{s} symmetry; the choice of the space group Pn2 α leads to no required symmetry for the molecule. The initial choice of Pnma as the space group was fully confirmed by all subsequent developments during the determination and refinement of structure. The structure was solved by the standard heavy-atom method. Block-diagonal least-squares refinement * was followed by a difference Fourier synthesis which revealed electron density concentrations appropriately located for all hydrogen atoms. The positions of the hydrogen atoms were idealized ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and included in the subsequent refinement cycles as fixed contributors. The refinement was then carried to convergence using anisotropic thermal parameters for all heavy atoms. The final value of $R_{1}=$ $\Sigma\left|F_{0}\right|-\left|F_{\mathrm{e}}\right| / \Sigma\left|F_{0}\right|$ was 0.031 , that of $R_{2}=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{e}}\right|\right)^{2} / \Sigma w\left(F_{0}\right)^{2}\right]^{1 / 2}$ was 0.038 . The estimated standard deviation of an observation of unit weight was 1.158. The final parameter shifts were less than 20% of the estimated standard deviation during the last cycle. A final difference Fourier synthesis had some features close to the Os atom but was otherwise featureless.

Atomic coordinates and the associated anisotropic thermal parameters in the asymmetric unit of structure are listed in Tables 1 and 2, respectively. Primed and unprimed symbols, e.g., C_{i} and C_{i}^{\prime}, denote a pair of atoms related by the mirror plane of symmetry (see Fig. 3).

Acknowledgements

We are grateful for financial support from the National Institutes of Health (HL-15627) at the University of Notre Dame, and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie at the Technische Hochschule Aachen.

References

1 J.W. Buchler, in K.M. Smith (Ed.), Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1975, pp. 158-231.
2 J.P. Collman, R.R. Gagne,C.A. Reed, T.R. Halbert, G. Lang and W.T. Robinson, J. Amer, Chem. Soc., 97 (1975) 1427.
3 J.P. Collman, R.R. Gagné and C.A. Reed, J. Amer. Chem. Soc., 96 (1974) 2629.
4 J.L. Hoard, personal communication; ref. 1, p. 358.
5 J.W. Buchler and K.L.. Lay, Z. Naturforsch., 30b (1975) 385.
6 K.L. Lay, Dissertation, Technische Hochschule Aachen, 1975.
7 J.W. Buchler and K. Rohbock, J. Organometal. Chem., 65 (1974) 223.
8 J.W. Buchler and P.D. Smith, Angew. Chem., 86 (1974) 820; Angew. Chem., Int. Ed. Engl., 13 (1974)745.

9 J.W. Buchler and L. Puppe, Ann. Chem. 740 (1970) 142.
10 J.W. Buchler and L. Puppe, Ann. Chem., (1974) 1046.
11 J.W. Buchler, L. Puppe, K. Rohbock and H.H. Sehneehage, Ann. N.Y. Acad. Sci., 206 (1973) 116.

[^4]12-C.K. Johnson, ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations,
OORNL3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.
13 WR Busing, K O. Martin and HA. Levy, ORFFE, A Fortran Crystallographic Function and Error Program, ORNL-TM-306 Oak Ridge National Laboratory, Oak Ridge, Tenn., 1964.
14 P.N. DWyer, J.W. Buchler and W.R. Scheidt. J. Amer. Chem. Soc., 96 (1974) 2789.
15 P.N. Dwyer, L, Ruppe, J.W. Buchler and W.R. Scheidt, Inorg. Chem., 14 (1975) 1782.
16 J.E. Fergusson, J.L. Love and W.T. Robinson, Inorg. Chem., 11 (1972):1662.
17 D. Bright and J.A. Bers, Inorg. Chen., 8 (1969) 1078 .
18 E.R. Corey and L.F. Dah, Inorg. Chem., 1 (1962) 521.
19 J.G. Bullitt and F.A. Cotton, Inorg. Chim. Acta, 5 (1971) 406.
20 G. Ferraris and G. Gervasio, J. Chem. Soc., Dalton, (1972) 1057.
21 W.H. Scheidt. J. Amer. Chem. Soc, 96 (1974) 84.
22 D.T. Cromer and J.B. Mann. Acta Crystallogr., A 24 (1968) 321.
23 D.T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.

[^0]: * For part XIV see ref. 5 .

[^1]: a The number in parentheses following each datum is the estimated deviation in the last significant figure. Atoms are identified in agreement with Fig. 1. ${ }^{c}$ For 0 s $10^{5} x=6395(1), 10^{5} y=25000(0)$. $10^{5} z=4860(2)$.

[^2]: * These calculations followed ref. 13.

[^3]: ${ }^{0}$ The number in parentheses following each datum is the estimated standard deviation in the last significant figure.

[^4]: * The program, REFINE, written by J.J. Parl at Cornell University. The function minimized was $\Sigma \tilde{w}\left(\left|F_{o}\right|-s\left|F_{e}\right|\right)^{2}$ wherein w is the weight and s is the scaling factor. Atomic form factors were from ref. 22, with corrections, real and imaginary, for the anomalous scattering of the osmium atom from ref. 23.

